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Abstract. Motivated by the need to uncover some underlying mathematical structure of optimal quan-
tum computation, we carry out a systematic analysis of a wide variety of quantum algorithms from the
majorization theory point of view. We conclude that step-by-step majorization is found in the known in-
stances of fast and efficient algorithms, namely in the quantum Fourier transform, in Grover’s algorithm,
in the hidden affine function problem, in searching by quantum adiabatic evolution and in deterministic
quantum walks in continuous time solving a classically hard problem. On the other hand, the optimal
quantum algorithm for parity determination, which does not provide any computational speed-up, does
not show step-by-step majorization. Lack of both speed-up and step-by-step majorization is also a feature
of the adiabatic quantum algorithm solving the 2-SAT “ring of agrees” problem. Furthermore, the quan-
tum algorithm for the hidden affine function problem does not make use of any entanglement while it does
obey majorization. All the above results give support to a step-by-step Majorization Principle necessary
for optimal quantum computation.

PACS. 03.67.-a Quantum information – 03.67.Lx Quantum computation

1 Introduction

One of the main open problems in quantum computa-
tion theory is finding some mathematical structure un-
derlying optimal quantum algorithms. There is a rather
short list of ideas behind the design of fast algorithms.
Grover’s quantum searching algorithm [1] exploits calls to
an oracle by enhancing a particular state via a rotation
in the relevant Hilbert space associated to the problem.
Shor’s quantum factoring algorithm [2] exploits the peri-
odicity of an initial quantum state using only a minimum
of Hadamard gates at the core of the quantum Fourier
transform. Based on more general quantum mechanical
principles, the idea of using adiabatic evolution to carry
quantum computation [3] has proven suitable for perform-
ing Grover’s algorithm and has been numerically studied
as a candidate for attacking NP-complete problems. More
recently, deterministic random walks in continuous time
have been proven to solve a classically hard problem in
polynomial time [4]. Many other quantum algorithms can
be mapped to the above families and, therefore, bring no
further insight.

Some attempts to uncover an underlying principle,
common to all known optimal algorithms, have already
been explored though not definite and satisfactory answer
has been found. One relevant instance is the role of entan-
glement in quantum algorithms [5–10]. Although entan-
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glement is a natural resource to be exploited in quantum
algorithm design, there are known examples of fast algo-
rithms where the quantum register remains in a product
state all along the computation. Our work will concen-
trate on quite a different proposal. The basic idea is that
efficiency is related to a strong majorization principle. We
shall investigate the way the probability distribution as-
sociated to the computational basis evolves along optimal
quantum computations and find that it obeys a very con-
strained behavior we shall analyze in detail.

Let us recall that majorization theory arises as the
natural framework to study the measure of disorder for
classical probability distributions [11–14]. The notion of
ordering emerging from majorization is far more severe
than the one quantified by the standard Shannon entropy.
If one probability distribution majorizes another, a set of
inequalities must hold to constrain the former probabili-
ties with respect to the latter. These inequalities lead to
entropy ordering, but the converse is not necessarily true.
In quantum mechanics, it has been proven that majoriza-
tion is at the heart of the solution of a large number of
quantum information problems. Majorization plays a fun-
damental role in topics like ensemble realization, conver-
sion of quantum states via local operations and classical
communication, and characterization of positive operator
valued measurements [15].

In the context of quantum algorithms, a majoriza-
tion principle has been formulated, proven for Grover’s
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algorithm and verified for Shor’s algorithm in refer-
ence [16]. Furthermore, a complete proof of majorization
in quantum phase-estimation algorithms was presented
in [17]. The underlying idea behind these analysis is that
the probability distribution associated to the quantum
state in the computational basis is step-by-step majorized
until it is maximally ordered. Then a measurement will
provide the sought solution with high probability. It has
also been proven that the way such a detailed majoriza-
tion emerges in both algorithmic families is intrinsically
different [17].

In this paper we analyze the consistency and universal-
ity of a possible Majorization Principle. More concretely,
we have studied several different quantum algorithms
based on distinct properties. First, we have considered
the problem of finding a hidden affine function by means
of calls to an oracle. This problem is relevant because it
is a known fast quantum algorithm that uses no entan-
glement at all. Second, we have taken a non-efficient in-
stance, namely the parity determination problem. This is
a case where the final solution must match a global ma-
jorization, yet it does not obey step by step majorization
neither presents any quantum speed-up. The third case
considered here is the large class of quantum adiabatic
evolution algorithms. Efficiency and optimality has been
proven to depend on the interpolating time path taken
along the evolution. It is a remarkable fact that optimal-
ity appears when step-by-step majorization is present. Fi-
nally, deterministic quantum random walks provide expo-
nential speed-up over classical oracle based random walks.
Again, a manifest strong majorization arrow is detected.

The conclusion of the accumulated research is that
all the analyzed instances of quantum algorithms sup-
port a step-by-step Majorization Principle. That is, op-
timal quantum computation is systematically verified to
correspond to a step by step detailed reordering of the
whole probability distribution in the computational ba-
sis. Some of the instances show the extra feature that the
initial state can be prepared in different ways. Then, an
initial step-by-step reverse majorization period precedes
the subsequent step-by-step majorization, closing an in-
vertible cycle. The study of quantum computation by adi-
abatic evolution shows the possibility of slower algorithms
that maintain majorization. This implies that step-by-step
majorization may be a necessary but is definitely not suf-
ficient condition for efficiency.

We have structured the paper as follows: in Section 2
we briefly review some concepts about majorization the-
ory and how it is related to quantum algorithms. We de-
velop an analysis of a quantum algorithm for solving a
hidden affine function problem in Section 3. In Section 4
we study an optimal quantum algorithm solving the parity
problem. We move to an investigation of adiabatic quan-
tum computation in Section 5, analyzing the effect of the
evolution path in adiabatic searching algorithms in Sec-
tions 5.1 and 5.2, as well as the effect of the speed in the
time variation of the Hamiltonian in Section 5.3. A further
example of adiabatic evolution solving the 2-SAT “ring of
agrees” problem is provided in Section 5.4. In Section 6

we examine a recently proposed quantum algorithm based
on a continuous time quantum walk on a graph solving a
classically hard problem. Finally, in Section 7 we state a
Majorization Principle based on all the previous results
and collect our conclusions.

2 Majorization theory and its relation
to quantum algorithms

Our approach to the mathematical study of quantum pro-
cesses will be through majorization’s eye. We review in
this section the contact point between majorization theory
and quantum algorithms, as stated previously in [16,17].
In particular, we also present here the concept of “natural
majorization”, first stated in [17], which will eventually be
used in this work.

2.1 Majorization theory

Let us consider two vectors x, y ∈ R
d such that

∑d
i=1 xi =

∑d
i=1 yi = 1, whose components represent two different

probability distributions. We say that distribution y ma-
jorizes distribution x, written as x ≺ y, if and only if there
exist a set of permutation matrices Pj and probabilities pj

such that
x =

∑

j

pjPjy. (1)

Because the probability distribution x can be obtained
from y by means of a probabilistic sum, the definition
given in equation (1) provides the intuitive notion that
the x-distribution is more disordered than y. An alterna-
tive and usually more practical definition of majorization
can be stated in terms of a set of inequalities to be held
between the two distributions. Consider the components
of the two vectors sorted in decreasing order, written as
(z1, . . . zd) ≡ z↓. We say that y↓ majorizes x↓ if and only
if the following relations are satisfied:

k∑

i=1

xi ≤
k∑

i=1

yi k = 1 . . . d. (2)

In this paper we call probability sums similar to the
ones appearing in the previous expression as “cumulants”.
There is still a third way of defining majorization involv-
ing the use of doubly stochastic matrices. A real d × d
matrix D = (Dij) is said to be doubly stochastic if it has
non-negative entries, and each row and column of D sums
to 1. We say that y majorizes x if and only if there is a
doubly stochastic matrix D such that

x = Dy. (3)

The equivalence among the three given definitions can
be proven [14]. Complementarily, we say that the prob-
ability distribution x reversely majorizes distribution y
if and only if y majorizes x. A powerful relation in-
volving majorization and the common Shannon entropy
H(x) ≡ −∑d

i=1 xi log xi of probability distribution x is
that if x ≺ y then H(x) ≥ H(y).
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2.2 Link between majorization theory and quantum
algorithms

The way we relate majorization theory to quantum algo-
rithms can be stated as follows: let |ψ(m)〉 be the pure
state representing the register in a quantum computer at
an operating stage labeled bym = 1 . . .M , whereM is the
total number of steps in the algorithm, and let N be the
dimension of the Hilbert space. If we denote as {|i〉}N

i=1
the basis in which the final measurement is performed in
the algorithm, we can naturally associate a set of sorted
probabilities pi, i = 1 . . .N , to this quantum state in the
following way: decompose the register state in the mea-
surement basis such that

|ψ(m)〉 =
N∑

i=1

a
(m)
i |i〉. (4)

The probability distribution associated to this state is

p(m) = {p(m)
i } p

(m)
i ≡ |a(m)

i |2 = |〈i|ψ(m)〉|2 (5)

where i = 1 . . .N , which corresponds to the probabili-
ties of all the possible outcomes if the computation were
stopped at stage m and a measurement were performed.
A quantum algorithm will be said to majorize this proba-
bility distribution between steps m and m+ 1 if and only
if [16,17]

p(m) ≺ p(m+1). (6)

Similarly, a quantum algorithm will be said to reversely
majorize this probability distribution between stepsm and
m+ 1 if and only if

p(m+1) ≺ p(m). (7)

If the situation given in equation (6) is step-by-step veri-
fied, there is a net flow of probability directed to the values
of highest weight, in such a way that the probability dis-
tribution will be steeper as time flows. In physical terms,
this can be stated as a very particular constructive inter-
ference behavior, namely, a constructive interference that
has to step-by-step satisfy the constraints given in equa-
tion (2). The quantum algorithm builds up the solution
at each time step by means of this very precise reordering
of probability distribution.

It is important to note that majorization is checked
on a particular basis. Step-by-step majorization is a basis
dependent concept. Nevertheless there is a preferred ba-
sis, which is the basis defined by the physical implemen-
tation of the quantum computer or computational basis.
The principle we analyze is rooted in the physical possi-
bility to arbitrarily stop the computation at any time and
perform a measurement. The claim pursued along the pa-
per is that the probability distribution associated to this
physically meaningful action obeys majorization.

2.3 Natural majorization in quantum algorithms

Let us now define the concept of natural majorization for
quantum algorithms as it was originally presented in [17].

Working with probability amplitudes in the basis {|i〉}N
i=1,

the action of a particular unitary gate at step m makes
the amplitudes evolve to step m+ 1 in the following way:

a
(m+1)
i =

N∑

j=1

Uija
(m)
j , (8)

where Uij are the matrix elements in the chosen basis of
the unitary evolution operator (namely, the propagator
from step m to step m + 1). Inverting the evolution, we
can write

a
(m)
i =

N∑

j=1

Cija
(m+1)
j , (9)

where Cij are the matrix elements of the inverse unitary
evolution (which is unitary as well). Taking the square
modulus we find

∣
∣
∣a

(m)
i

∣
∣
∣
2

=
N∑

j=1

|Cij |2
∣
∣
∣a

(m+1)
j

∣
∣
∣
2

+ interference terms. (10)

Should the interference terms disappear, majorization
would be verified in a “natural” way between steps m and
m + 1 because the initial probability distribution could
be obtained from the final one only by the action of a
doubly stochastic matrix with entries |Cij |2. This is the
so-called “natural majorization”: majorization which nat-
urally emerges from the unitary evolution due to the lack
of interference terms when making the square modulus of
the probability amplitudes. Similarly, we can define the
concept of “natural reverse majorization”, which follows
in a similar way: there will be “natural reverse majoriza-
tion” between steps m and m + 1 if and only if there is
“natural majorization” between time steps m+ 1 and m.

2.4 Majorization in Grover’s and Shor’s quantum
algorithms

In order to motivate the forthcoming study we briefly
sketch here the main results found concerning the anal-
ysis of majorization in the two well-known quantum al-
gorithms of Grover [1] and Shor [2]. These results were
already presented in references [16,17], so we address the
reader interested in precise details to these references.

On the one hand, Grover’s quantum searching algo-
rithm was found in [16] to follow a step-by-step majoriza-
tion. More concretely, each time the Grover’s operator
is applied the probability distribution obtained from the
computational basis obeys the set of constraints given in
equation (2) until the searched state is found. Further-
more, because of the possibility of understanding Grover’s
quantum evolution as a rotation in a two-dimensional
Hilbert space (see for example [22]) it is seen that the
quantum algorithm follows a step-by-step reverse ma-
jorization when evolving far away from the marked state,
until the initial superposition of all possible computational
states is obtained again. The quantum algorithm behaves
such that majorization is present when approaching to the
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solution, while reverse majorization appears when escap-
ing from it. A cycle of majorization and reverse majoriza-
tion emerges in the process as we consider long enough
time evolutions, due to the rotational nature of Grover’s
operator.

On the other hand, Shor’s quantum algorithm was
analyzed inside of the broad family of quantum phase-
estimation algorithms. In [16] it was observed that a step-
by-step majorization seemed to appear under the action
of the last quantum Fourier transform when considered in
the usual Coppersmith decomposition [23]. One step fur-
ther was taken in [17], were the complete mathematical
proof of this property was provided. The result relies on
the fact that those quantum states that can be mixed by
a Hadamard operator coming from the decomposition of
the quantum Fourier transform only differ by a phase all
along the computation. Such a property entails as well the
appearance of natural majorization, in the way presented
above. Natural majorization was proven relevant for the
case of Shor’s quantum Fourier transform. This particular
algorithm manages step-by-step majorization in a most
efficient way. No interference terms spoil the majorization
introduced by the natural diagonal terms in the unitary
evolution. It is still unclear the role that natural majoriza-
tion plays in distinguishing different levels of efficiency in
quantum algorithms.

These two results suggest a possible relation between
majorization and quantum algorithms. This is the point
to be exploited in detail with further examples in the next
sections.

3 Analysis of a quantum algorithm for solving
a hidden affine function problem

The problem of finding hidden affine functions was ini-
tially proposed by Bernstein and Vazirani [18] as a gener-
alization of Deutsch’s problem [19]. Further studies have
investigated into this class of problems, providing a range
of fast quantum algorithms for solving different general-
izations [20,21]. The case we present in this work is one
of the multiple variations stated in reference [21], but the
main results we obtain can be verified as well for the whole
set of quantum algorithms solving similar problems.

3.1 Setting of the problem

Let us state the following problem (see [21]): given an
integer N function f : x → mx + b, where x,m, b ∈ ZN ,
find m.

The classical analysis reveals that no information
about m can be obtained with only one evaluation of the
function f . Conversely, given the unitary operator Uf act-
ing in a reversible way in the Hilbert space HN ⊗HN such
that

Uf |x〉|y〉 = |x〉|y + f(x)〉, (11)

(where the sum is to be interpreted as modulus N), there
is a quantum algorithm solving this problem with only one
query to Uf .

Fig. 1. Quantum circuit solving the hidden affine function
problem. Each quantum wire is assumed to be composed of
n qubits. The arrow at the end indicates a measurement.

3.2 Quantum algorithm

Let us take N = 2n, being n the number of qubits. The
quantum algorithm optimally solving the problem previ-
ously presented reads as follows:

• prepare two registers of n qubits in the state
|0 . . . 0〉|ψ1〉 ∈ HN ⊗ HN , where |ψ1〉 = QFT (N)−1|1〉,
and QFT (N)−1 denotes the inverse quantum Fourier
transform in a Hilbert space of dimension N ;

• apply QFT (N) over the first register;
• apply Uf over the whole quantum state;
• apply QFT (N)−1 over the first register;
• measure the first register and output the measured

value.

The different steps concerning this process are summa-
rized in Figure 1.

3.3 Analysis of the quantum algorithm

We now show how the proposed quantum algorithm leads
to the solution of the problem. Our analysis raises two
observations concerning the way both entanglement and
majorization behave in the computational process.

In the first step of the algorithm, the quantum state
is separable, noting that the quantum Fourier trans-
form (and its inverse) applied on a well defined state
in the computational basis leads to a perfectly separa-
ble state (see, for example, [20]) Actually, this separa-
bility holds also step-by-step when a decomposition for
the quantum Fourier transform is considered, such as the
Coppersmith’s decomposition [23]. That is, the quantum
state |0 . . . 0〉|ψ1〉 is unentangled.

The second step of the algorithm corresponds to a
quantum Fourier transform in the first register. This ac-
tion leads to a step-by-step reverse majorization of the
probability distribution of the possible outcomes while it
does not use neither create any entanglement. Moreover,
natural reverse majorization is at work due to the absence
of interference terms.

Next, it is easy to verify that the quantum state

|ψ1〉 =
1√
N

N−1∑

j=0

e−2π j
N |j〉 (12)

is an eigenstate of the operation |y〉 → |y + f(x)〉 with
eigenvalue e2πi f(x)

N . After the third step, the quantum
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state reads

1√
N

N−1∑

x=0

e2πi f(x)
N |x〉|ψ1〉 =

e2πi b
N√
N

(
N−1∑

x=0

e2πi mx
N |x〉

)

|ψ1〉.
(13)

The probability distribution of possible outcomes has not
been modified, thus not affecting majorization. Further-
more, the pure quantum state of the first register can be
written as QFT (N)|m〉 (up to a phase factor), so this step
has not created any entanglement among the qubits of the
system either.

In the fourth step of the algorithm, the action of
the operator QFT (N)−1 over the first register leads to
the state e2πi b

N |m〉|ψ1〉. A subsequent measurement in the
computational basis over the first register provides the de-
sired solution. Recalling the results found in [17], we see
that the inverse quantum Fourier transform naturally ma-
jorizes step-by-step the probability distribution attached
to the different outputs. On the other hand, the separabil-
ity of the quantum state still holds step-by-step. Note that
step-by-step majorization is in fact dependent on the spe-
cific implementation of the quantum Fourier transform op-
eration, but nevertheless it holds true for other decompo-
sitions of the operator apart from the usual Coppersmith’s
one (as we already stated in [17]).

It is clear that the quantum algorithm is faster than
any of its possible classical counterparts, as it only needs
of a single query to the unitary operator Uf to get the
solution. We can summarize our analysis of majorization
for the present quantum algorithm as follows.

Result 1. The fast quantum algorithm for finding a
hidden affine function shows a majorization cycle based
on the action of a QFT (N) and a QFT (N)−1.

We understand that the algorithm is entanglement-free
as long as we analyze it between the action of the differ-
ent unitary gates. From a more physical point of view,
the quantum registers may become highly entangled dur-
ing the performance of multi-qubit gates, despite it is not
present between two of them. Our assertion relies then on
the study of the system at these particular steps in the
computation, which we think to be the most natural steps
to consider. It follows that there can exist quantum com-
putational speed-up without the use of entanglement (in
the way made precise before). In this case, it is seen that
no resource increases exponentially. Yet, a majorization
cycle is present in the process, which is indeed rooted in
the structure of both the quantum Fourier transform and
the quantum state.

4 Analysis of an optimal quantum algorithm
for solving the parity problem

The problem of finding the parity of a given function
f : x ∈ ZN → {−1,+1}, usually known as the parity prob-
lem, has been shown to be as hard for a quantum computer
in the quantum oracular model of computation as it is for
a classical computer [24,25]: no quantum speed-up can be

achieved in this case. We shall first present the problem
and then analyze an optimal quantum algorithm proposed
in [24] from the point of view of majorization.

4.1 Setting of the problem

Let us state the parity problem in the following way
(see [24]): given a function f : x ∈ ZN → {−1,+1}, eval-
uate the product of all the f(x) for all the possible x.

It has been proved that a quantum computer will need
at least N/2 queries to the quantum oracle f for solv-
ing this problem compared to the N classical queries [24].
Thus, a quantum computer is not faster than a classical
one (in the limit of a very large input, where N goes to
infinity) when dealing with this situation: no better effi-
ciencies can be obtained using the quantum computational
paradigm in getting the desired result. The time complex-
ity of the best possible quantum algorithm will be O(N),
without improvement with respect to the classical time
complexity, because the quantum speed-up is only by a
factor of two.

4.2 Quantum algorithm

Let us briefly outline the main lines of an optimal quan-
tum algorithm solving the parity problem in exactly
N/2 queries to the oracular function f , which was initially
presented in [24]. We first introduce a series of definitions
and notations: the function f(x) will be evaluated through
a quantum oracle acting in the following way

Uf |x,+1〉 = |x, f(x)〉
Uf |x,−1〉 = |x,−f(x)〉, (14)

where the second register is a qubit taking the val-
ues ±1. Let us define also the quantum state |x, a〉 =
(|x,+1〉 − |x,−1〉) /√2, which is seen to be a proper state
of operator Uf with eigenvalue f(x). With these defini-
tions, the quantum algorithm reads as follows:

• prepare the initial quantum state |ψ0〉 =
∑N

x=1 |x, a〉/
√
N ;

• apply the following operations over the initial quantum
state:

VN/2UfVN/2−1Uf · · ·V1Uf |ψ0〉 ≡ |ψf 〉, (15)

where Uf is defined as before, and the rest of operators
are defined as VN/2 = 1, Vi = V ∀ i �= N/2, with

V |x, a〉 = |x+ 1, a〉 x = 1, . . . ,
N

2
− 1

V |N2 , a〉 = |1, a〉

V |x, a〉 = |x+ 1, a〉 x =
N

2
+ 1, . . . , N − 1

V |N, a〉 = |N
2

+ 1, a〉; (16)
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• measure the observable |ψ0〉〈ψ0| over |ψf 〉.
Note that the final measurement is to be made on a specific
basis.

4.3 Analysis of the quantum algorithm

We now make an study of how this algorithm leads to the
desired solution of the proposed problem. The analysis
will show the way majorization behaves in this optimal
but non-efficient quantum process.

We focus on how the operations in the second step
affect the quantum state leading to the solution, and thus
affect the probability distribution of possible outcomes for
the final measurement. If we apply Uf to the initial state,
we get

Uf |ψ0〉 =
1√
N

N∑

x=1

f(x)|x, a〉. (17)

After the application of operator V1 the quantum state
evolves to

V1Uf |ψ0〉 =
1√
N

N/2∑

x=1

f(x− 1)|x, a〉

+
1√
N

N∑

x=N/2+1

f(x− 1)|x, a〉, (18)

as can be directly checked (care must be taken with
the possible values of x in both sums). If we now apply
again Uf we get:

UfV1Uf |ψ0〉 =
1√
N

N/2∑

x=1

f(x)f(x − 1)|x, a〉

+
1√
N

N∑

x=N/2+1

f(x)f(x− 1)|x, a〉, (19)

so we begin to recognize the pattern the algorithm follows.
At the end of the computation the final state is

|ψf 〉 =
1√
N
f(1) · · · f(N/2)

N/2∑

x=1

|x, a〉

+
1√
N
f(N/2 + 1) · · · f(N)

N∑

x=N/2+1

|x, a〉, (20)

and it is easily verified that this state is equal to |ψ0〉 if
the parity of the function is equal to +1, and orthogonal
to |ψ0〉 (say |ψ⊥

0 〉) if the parity is −1. A suitable mea-
surement of the observable |ψ0〉〈ψ0| can then distinguish
between the two values.

Let us now analyze the way this algorithm behaves
with respect to majorization. As stated in Section 2.2,
majorization must always be checked from the probabil-
ity distribution of obtaining the different outcomes of the

final measurement. In other words, the probability distri-
bution subject of analysis must always be the one obtained
from the final measurement basis. Such a basis turns usu-
ally to be the computational one, but it is not necessar-
ily so. Here, we are dealing with one of these exceptional
cases in which the final measurement basis differs from
the computational one. Consequently, majorization must
be studied in this unusual but natural basis for the quan-
tum algorithm.

The only two vectors we know of this basis are |ψ0〉
and |ψ⊥

0 〉. We could extend them to a whole basis but it
is not necessary for our purposes, as we can analyze the
probability of being in each of these two states all along the
computation. Should majorization be present step-by-step
in the process, the probability of being in one of these two
states would smoothly decrease in favor of the other one,
which would parallely smoothly increase. In a naive way,
this is what a majorization arrow means: as the process
evolves the probability of being in the right state becomes
bigger and bigger.

We can observe that this does not happen in the al-
gorithm for the whole computational process, except for
the last application of the oracle Uf (compulsory if one
wishes to distinguish between the two states). It is eas-
ily seen, because in all the steps of the computation the
quantum state is an arbitrary superposition of computa-
tional states of amplitudes +1/

√
N and −1/

√
N , with-

out any apparent structure, so the probabilities of being
in |ψ0〉 or |ψ⊥

0 〉 evolve erratically. The full structure only
appears when the last oracle Uf is applied, thus providing
the necessary majorization to be able to distinguish the
two states with a measurement, but the important point
is that this is not a majorization arrow, because there is
no step-by-step majorization. This is stated in our second
result.

Result 2. No step-by-step majorization is present
along the non-efficient parity determination problem.

Thus, no majorization cycle similar to the one found
in the preceding section could ever appear. Interestingly
enough, this is a problem in which quantum computers do
not provide a better efficiency than classical ones.

5 Analysis of the adiabatic searching
algorithms and of an adiabatic algorithm
solving a 2-SAT problem

We now turn to the analysis of the quantum adiabatic
searching algorithm, observing the effects of a change of
path between the initial and the problem Hamiltonian un-
der the majorization’s point of view [16]. We see that those
paths leading to optimality in the algorithm lead as well to
step-by-step majorization, while the converse is not nec-
essarily true. A different example of adiabatic evolution
is analyzed in the last point of this section, namely, an
adiabatic algorithm solving the 2-SAT “ring of agrees”
problem.
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The adiabatic model of quantum computation was ini-
tially introduced in [3], and can be briefly summarized as
follows. We consider a physical system controlled by a time
dependent Hamiltonian of the form

H(s(t)) = (1 − s(t))H0 + s(t)Hp, (21)

where H0 and Hp are the initial and problem Hamilto-
nian respectively, and s(t) is a time dependent function
satisfying the boundary conditions s(0) = 0 and s(T ) = 1
for a given T . The desired solution to a given problem
is encoded in the ground state of Hp. The gap between
the ground and the first excited state of the instanta-
neous Hamiltonian at time t will be called g(t). Let us
define gmin as the global minimum of g(t) for t in the
interval [0, T ]. If at time T the ground state is given by
the state |E0;T 〉, the adiabatic theorem states that if we
prepare the system in its ground state at t = 0 (which
is assumed to be easy to prepare) and let it evolve under
this Hamiltonian, then

|〈E0;T |ψ(T )〉|2 ≥ 1 − ε2 (22)

provided that
max|dH1,0

dt |
g2

min

≤ ε (23)

where H1,0 is the Hamiltonian matrix element between
the ground and first excited state, ε  1, and the maxi-
mization is taken over the whole time interval [0, T ] [3,28].
Because the problem Hamiltonian encodes the solution to
the problem in its ground state, we get the desired solution
with high probability after a time T .

This quantum adiabatic evolution method has been
applied to the searching problem ([26–29]). Let the ini-
tial state be |ψ0〉 = 1√

N

∑N
x=1 |x〉, being N the number of

entries for the searching, and let the initial and problem
Hamiltonian be H0 = I − |ψ0〉〈ψ0| and Hp = I − |m〉〈m|,
being |m〉 the searched state. This scheme leads to dif-
ferent results depending on whether we apply the adia-
batic condition globally (that is, in the whole time inter-
val [0, T ]) or locally (at each time t). In what follows we
will consider these two situations without entering into
precise details of the involved calculations. For further in-
formation, we refer the reader to [26,27] and references
therein.

5.1 Analysis of the fastest global adiabatic evolution

Let us suppose that we demand the adiabatic condition
given in equation (23) to be satisfied globally in the whole
interval [0, T ]. This does not involve any particular restric-
tion on the form of s(t), so we can then choose s(t) = t/T ,
leading to a linear evolution of the Hamiltonian. Under
these circumstances it can be proven [27] that the global
adiabatic condition is verified provided that

T ≥ N

ε
· (24)
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Fig. 2. Global adiabatic evolution with parameters ε = 0.2,
N = 32 and T = 160. The solid line corresponds to the time
evolution of P+(t) and the dashed line that of P+(t) + P−(t).

Hence, the algorithm needs O(N) time to hit the solu-
tion with appreciable probability, so the global adiabatic
searching does not lead to an increasing efficiency with re-
spect to a classical searching (in contrast with the square
root speed-up of Grover’s quantum algorithm).

Let us call P+(t) the probability of being at the
searched state at time t and similarly P−(t) the proba-
bility of being at any different state from the desired one
at time t. Note that, because of the symmetry of the prob-
lem, P−(t) will be exactly the same for all those quantum
states differing from the solution state all along the com-
putational process. In order to analyze majorization, we
recall the set of inequalities given in equation (2) to be sat-
isfied at each majorizing time step. It is easy to see that the
maximum probability at all times will be P+(t), while the
rest of the probabilities will remain smaller to this quan-
tity all along the computation and equal to P−(t). In order
to gain simplicity we have analyzed in detail the behaviour
of the two non-trivial cumulants P+(t) and P+(t)+P−(t),
as the rest of them will not lead to different conclusions
from the ones emerging from our study.

We have performed numerical simulations in the
fastest allowed case (T = N/ε) and have found the time
evolution for the two cumulants. The results for ε = 0.2
and N = 32 are shown in Figure 2.

From our numerical analysis we arrive at our third
result.

Result 3. A naive adiabatic quantum searching pro-
cess does not produce an optimal algorithm neither verifies
step-by-step majorization.

This property is clearly seen as the two cumulants
decrease in time for some time steps, thus not verifying
majorization.

5.2 Analysis of the local adiabatic evolution

The preceding global adiabatic method can be improved
if we apply the adiabatic condition given in equation (23)
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Fig. 3. Local adiabatic evolution. The driving Hamiltonian,
with ε = 0.2 and N = 32.

locally. That is, let us divide the interval [0, T ] into many
subintervals and let us apply (23) to each of the subinter-
vals individually. Taking the limit of the size of the subin-
tervals going to zero, we find that the adiabatic restriction
has to be fulfilled locally at each time t:

|dH1,0
dt |

g2(t)
≤ ε ∀t. (25)

This is a less demanding condition than (23) (if (23) is sat-
isfied, so is (25), but the inverse is not necessarily true),
and means that the adiabatic evolution must be satisfied
at each infinitesimal time interval. It can be shown (see,
for example, [27]) that proceeding in this way the func-
tion s(t) must have a precise form which is given by the
relation

t =
1
2ε

N√
N − 1

(
arctan(

√
N − 1(2s− 1))

+ arctan(
√
N − 1)

)
. (26)

We can observe this dynamic evolution from Figure 3, in
the case of ε = 0.2 and N = 32. The local adiabatic pro-
cess implies that the smaller the energy gap between the
ground and first excited states, the slower the evolution
of the Hamiltonian (and vice versa).

With this information it can be proven as well [27]
that the evolution time for the algorithm to succeed with
appreciable probability is, in the limit where N � 1,

T =
π

2ε

√
N. (27)

Hence, in the case of local adiabatic evolution the com-
putational process takes O(

√
N) time, just as in Grover’s

quantum searching algorithm, obtaining an square root
speed-up with respect to a classical searching.

Defining again P+(t) and P−(t) in the same way as
in Section 5.1, we can restrict ourselves to the analysis of
the two non-trivial cumulants P+(t) and P+(t) +P−(t) in
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Fig. 4. Local adiabatic evolution with parameters ε = 0.2,
N = 32 and T = 44. The solid line corresponds to the time
evolution of P+(t) and the dashed line that of P+(t) + P−(t).

order to observe the evolution of majorization in the quan-
tum process. We have numerically solved the equations for
ε = 0.2 and N = 32, and have found the evolution of the
two quantities, which is given in Figure 4.

From the numerical analysis the following result
emerges.

Result 4. A local adiabatic searching algorithm is op-
timal and verifies step-by-step majorization.

This result can be straightforwardly verified since the
set of inequalities of (2) are satisfied step-by-step, accord-
ing to the plot in Figure 4. Due to this behavior, the whole
computational process might lead to a majorization cycle,
such as the one observed in Section 3, as long as the pre-
vious preparation of the initial quantum state of the com-
putation at time t = 0 leads to a step-by-step reverse ma-
jorization. This turns to be always possible, for example,
by applying a set of Hadamard gates to the logN -qubit
quantum state |0 . . . 0〉 (assume that N is a power of 2,
for simplicity), which would efficiently prepare a superpo-
sition of all the possible quantum states together linked to
a reverse majorization arrow. Furthermore, this quantum
process leads to an increasing efficiency with respect to a
classical searching, exactly in the same fashion as Grover’s
original quantum searching algorithm [1].

5.3 Analysis of slower global adiabatic evolutions

Let us now address the situation of global adiabatic evo-
lutions which are not necessarily tight in time, that is,
extremely slow time variations for the Hamiltonian, much
slower than the minimum necessary for the adiabatic the-
orem to hold. In the case we are dealing with, that implies
the consideration of the case in which T > N/ε, i.e., the
adiabatic inequality (24) is not tight. This case is not very
relevant from a computational point of view because the
hitting time is not the minimum possible, but we think
it is worthwhile to be studied also from the point of view
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Fig. 5. Global adiabatic evolution with ε = 0.2, N = 32, and
T = 320. The solid line corresponds to the time evolution of
P+(t) and the dashed line that of P+(t) + P−(t).
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Fig. 6. Global adiabatic evolution with ε = 0.2, N = 32,
and T = 480. The solid line corresponds to the time evolution
of P+(t) and the dashed line that of P+(t) + P−(t).

of majorization theory in order to have a more complete
picture of how majorization really works in this kind of
quantum algorithms.

We have performed again numerical analysis for the
time evolution of the two non-trivial cumulants, for
ε = 0.2, N = 32, and T = 320, 480 (in both cases big-
ger than N/ε = 160). The results are plotted in Figures 5
and 6.

From these two plots, we observe with Figure 2, that
a step-by-step majorization appears as long as the evolu-
tion of the Hamiltonian becomes slower and slower. Phys-
ically, this means that the probability of “jumping” to the
first excited state diminishes as long as the evolution is
performed with a very small velocity, thus satisfying bet-
ter the assumptions of the adiabatic theorem. This leads to
processes in which there is no quantum speed-up but there
is indeed a majorization arrow. However, these processes
are not optimal in time, as we can always find faster quan-

tum algorithms for solving the problem. Consequently, we
arrive at the following conclusion.

Result 5. Non-optimal quantum algorithms may
present step-by-step majorization. In particular, step-by-
step majorization may appear in global adiabatic searching
processes for a slow enough evolution rate.

It follows that step-by-step majorization cannot be a
sufficient condition for quantum speed-up.

We can get some further intuition of the set of results
presented in this section. Adiabatic quantum searching al-
gorithms can be understood (in the limit of large N) as
a rotation from the initial state to the marked state as
long as the adiabaticity (either global or local) of the evo-
lution is conveniently satisfied (see [29] for details). The
difference between the global and local conditions turns
out to be the evolution rate of the rotation angle: local
adiabatic evolution imposes a rotation at constant rate
(as in the original Grover’s algorithm) whereas global adi-
abatic evolution does not. Because of this rotational pic-
ture, step-by-step majorization is verified as long as the
quantum state remains in the instantaneous ground state
all along the computation. We can now understand our
results in a finer way. Global adiabatic evolution is not
a strong enough condition for adiabaticity, thus we only
see step-by-step majorization when the evolution is really
slow, in which case the quantum state adiabatically ro-
tates towards the solution because it remains very close to
the ground state of the instantaneous Hamiltonian. Local
adiabatic evolution is a stronger condition for adiabatic-
ity the quantum state remains always very close to the
instantaneous ground state, thus performing the rotation
towards the solution which in turn involves step-by-step
majorization.

5.4 A further example: a 2-SAT quantum adiabatic
algorithm solving the “ring of agrees” problem

Let us consider now a different example of adiabatic quan-
tum computation, namely, an adiabatic quantum algo-
rithm solving the 2-SAT “ring of agrees” problem, as
stated in [3]. As long as 2-SAT can be efficiently solved
by a classical algorithm in a time O(poly(n)) (being n the
number of bits) [30], quantum computation can do no bet-
ter than classical computation in this case. The problem
Hamiltonian Hp is now a sum of Hamiltonians involving
each of the different clauses of the 2-SAT problem, whereas
the initial Hamiltonian H0 is such that its ground state
is again an equal superposition of all the possible states
of the computational basis. The “ring of agrees” problem
over n bits is defined such that clause j acts on bits j
and j + 1 where j runs from 1 to n and bit n+ 1 is iden-
tified with bit 1. Each clause is an “agree” clause, which
means that 00 and 11 are the satisfying assignments. The
eigenvectors of the Hamiltonian associated with clause j
are the computational states, in such a way that those
which “agree” in qubits j and j + 1 have zero energy
(ground states) whereas those which “disagree” have en-
ergy one. Because the problem Hamiltonian is a sum of the
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Fig. 7. Evolution of the 15 cumulants in the “ring of agrees”
for a Hilbert space of dimension 16.

n Hamiltonians for the n “agree” clauses, its ground states
are |0〉|0〉 · · · |0〉, |1〉|1〉 · · · |1〉, or any linear combination of
them.

We have made an analysis of the adiabatic quantum
algorithm in which the interpolation between the initial
and problem Hamiltonian is linear, s(t) = t/T , for the case
of 4 qubits (Hilbert space of dimension 16), and choosing
T = 10. The evolution of the 15 cumulants is plotted in
Figure 7.

Note the similarity between Figures 7 and 2 in Sec-
tion 5.1, namely, no step-by-step majorization is present
in the evolution because of the oscillatory behaviour of
the cumulants. Both plots represent quantum algorithms
which do not improve classical computation and which
probabilities share the same behaviour under the point
of view of majorization. Our observation is then the
following.

Result 6. A quantum adiabatic algorithm solving the
2-SAT “ring of agrees” problem does not improve classical
computation, neither verifies step-by-step majorization.

This result reinforces the ones already found with re-
spect to adiabatic searching algorithms.

6 Analysis of a quantum walk in continuous
time with exponential algorithmic speed-up

The extension of classical random walks to the quantum
world has been widely studied, yielding two different mod-
els of quantum random walks, namely, those which op-
erate in discrete time by means of using a “coin opera-
tor” [31–33] and those based on a Hamiltonian evolution
in continuous time [4,34,35]. Regarding the discrete time
model of quantum random walk two interesting algorith-
mic results have been found so far, namely, an exponen-
tially faster hitting time in the hypercube with respect to
the classical random walk [36] and a quantum searching
algorithm achieving the Grover’s quadratic speed-up [37].

Fig. 8. A possible graph constructed from two binary trees
with n = 3.

The first of these examples does not provide any algorith-
mic speed-up, as there exists a classical algorithm that
solves the hitting problem in the hypercube exponentially
faster than the naive classical random walk, that is, in
a time O(poly(logN)) where N is the number of nodes
of the graph (see [4]). On the other hand, the second of
these examples shows algorithmic advantage with respect
to any possible classical computation. The analysis of the
quantum random walk searching algorithm shows that
the quantum evolution can be understood as an (approxi-
mate) rotation of the quantum state in a two-dimensional
Hilbert space which is exact in the limit of a very large
database (see [37] for details), resembling the original pro-
posal of Grover’s searching algorithm which can be decom-
posed exactly in a two-dimensional Hilbert space. This
rotational structure of the evolution implies step-by-step
majorization when approaching the marked state, exactly
in the same fashion than the usual Grover’s searching al-
gorithm (already analyzed in [16]).

In this section we restrict ourselves to the continu-
ous time model of quantum walk and analyze a recently
proposed quantum algorithm based on a quantum walk
on continuous time solving a classically hard problem [4].
Here we restrict ourselves to briefly sketch the main points
and ideas of both the problem setting and its quantum ef-
ficient solution, since the whole development of the algo-
rithm is not the purpose of the present paper. We address
the interested reader to [4].

6.1 Setting of the problem

The problem we wish to solve is defined through a graph
built in the following way (see [4]): suppose we are given
two balanced binary trees of height n with the 2n leaves of
the left tree identified with the 2n leaves of the right tree
in a simple way, as shown in Figure 8. A way of modifying
such a graph is by connecting the leaves by a random cycle
that alternates between the leaves of the two trees, instead
of identifying them directly. An example of such a graph
is provided in Figure 9.

Suppose that the edges of such a graph are assigned a
consistent coloring (that is, not two edges incident in the
same vertex have the same color), and that the vertices
are each one given a different name (with a 2n-bit string,
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Fig. 9. An alternative graph constructed from two binary trees
with n = 3 (connection between the leaves is made through a
random cycle).

so there are more possible names than the ones assigned).
We now define a black box that takes two inputs, a name a
given as a 2n-bit string and a color c, and acts in the
following way: if the input name a corresponds to a vertex
that is incident with an edge of color c, then the output
corresponds to the name of the vertex joined by that edge;
if a is not the name of a vertex or a is the name of a vertex
but there is no incident edge of color c, the output is the
special 2n-bit string 11 . . . 1, which is not the name of any
vertex.

Now, the problem we wish to solve reads as follows:
given a black box for a graph such as the one previously
described, and given the name of the IN vertex, find the
name of the OUT vertex.

In [4] it was proven that no classical algorithm can
transverse a graph such as the one in Figure 9 in polyno-
mial time, given such a black box. Furthermore, an explicit
construction of a quantum algorithm based on a contin-
uous time quantum walk on the graph that succeeds in
finding the solution for this oracular problem in polyno-
mial time was given.

6.2 Quantum algorithm

The quantum algorithm of [4] can be briefly summarized
as follows: consider the (2n + 2)-dimensional subspace
spanned by the states

|col j〉 =
1

√
Nj

∑

a∈column j

|a〉, (28)

where Nj = 2j if 0 ≤ j ≤ n and Nj = 22n+1−j if
n + 1 ≤ j ≤ 2n + 1. We will call this subspace the “col-
umn subspace”, and each state of the basis is an equally
weighted sum of the states corresponding to the vertices
lying on each column of the graph. We now define a Hamil-
tonian acting on this subspace in the following way:

〈col j|H |col (j+1)〉=
{

1 0 ≤ j ≤ n− 1, n+ 1 ≤ j ≤ 2n√
2 j = n

(29)
with hermiticity of H giving the other nonzero matrix el-
ements. The action of this Hamiltonian in the graph is

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6

pr
ob

ab
ili

ty
 o

f s
uc

ce
ss

t

Fig. 10. Quantum walk algorithm. Probability of finding the
exit, for n = 4.

nothing but promoting transitions between adjoint ver-
tices, so a quantum walk on the graph (on the whole
Hilbert space) generated by this Hamiltonian is equivalent
to a quantum walk on the line (on the column subspace).
Consequently, from now on we only focus our attention
in the quantum walk in the line generated by the Hamil-
tonian of (29). Moreover, it can be proven that given the
structure of the graph in the form of a black box such as
the one already described, our Hamiltonian can be effi-
ciently simulated [4].

The quantum walk works as follows: at first the “wave
packet” will be precisely localized at the IN vertex (the ini-
tial state will be |col 0〉). Due to unitary time evolution,
it will initially spread out through the different vertices at
the left hand side of the graph (those belonging to the left
binary tree), but after a short time (once half the graph
has been transversed) it will begin to spread through the
vertices on the right hand side, interfering constructively
in the OUT vertex as the time goes on. Physically, this
is nothing but a wave propagation. Should we wait more
time, the wave packet would come back to the entrance,
and the process would be similarly repeated again. Actu-
ally, due to the “defect” of the Hamiltonian in the middle
vertices, it can be shown that the transmission through
the central columns is not of 100 percent (thus providing
interferences in long enough time scales), but high enough
for the OUT node to be achieved with a very high proba-
bility. In [4] the authors prove that the succeeding time is
polynomial in n.

6.3 Analysis of the quantum algorithm

We have numerically simulated this quantum walk for the
particular case of n = 4, and have plotted the time evolu-
tion of the probability of success in Figure 10. We observe
that the numerical result fits with the prediction that the
time the algorithm takes in achieving the OUT node is
polynomial.
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Fig. 11. Quantum walk algorithm. Time evolution of the ten
cumulants when one node per column is considered, for n = 4.

It is easy to observe that, in order to analyze majoriza-
tion, for the case of n = 4 there are only 10 non-trivial
probabilities to be studied. This is so due to the fact that
all the states of the whole Hilbert space belonging to the
same column always share the same probability ampli-
tude. The relevant quantities to be studied are then the
probabilities of being at each column state normalized to
the number of nodes belonging to that column, that is, the
probability of being in one node of each column. There are
then 2n+2 different probabilities to be considered at each
time step. Given only this 10 quantities, we are able to
calculate the whole set of 62 cumulants corresponding to
all the sums of sorted probabilities, according with equa-
tion (2). In order to make the figures as clear as possible we
only plot 10 of these quantities in Figure 11, correspond-
ing to the cumulants arising from the sorted probabilities
when only one node per column is considered. The rest of
the cumulants can be shown to have a similar behavior to
that of the ones appearing in Figure 11.

We have also numerically simulated the algorithm in
the case of a bigger graph, namely, in the case n = 10. In
this case there are 2n + 2 = 22 different probabilities to
be considered at each time step. Proceeding in the same
way than in the case n = 4 (that is, not plotting all the
cumulants, but the only the sorted sum of these 22 prob-
abilities), we obtain a similar behaviour as in the case for
n = 4, as is shown in Figure 12.

Therefore, we arrive at the following conclusion.

Result 7. The continuous time quantum walk
transversing a classically hard graph follows a step-by-
step majorization cycle all along the computation until it
reaches the OUT node.

It is worth remarking as well that the time the algo-
rithm spends reversely majorizing the probability distri-
bution is about half of the time of the whole computation.
The physical reason for this behavior is clear, as this is the
time the “wave packet” spends spreading over the binary
tree on the left hand side, thus leading to a destructive in-
terference part. It is note worthy that such a destructive
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Fig. 12. Quantum walk algorithm. Time evolution of the
22 cumulants when one node per column is considered, for
n = 10. Note that most of the quantities apparently collapse
when making the plot because of the small difference in the
probabilities given the big size of the graph.

interference indeed strictly follows a step-by-step reverse
majorization of probabilities (satisfying the inequalities
given in Eq. (2) for the case of reverse majorization). Fur-
thermore, we see combining Figures 10 and 11 that the
growing of the probability of success is linked to a step-
by-step majorization. Physically, this is the part in which
the algorithm constructively interferes into the OUT node
once the wave packet is approximately in the right hand
side binary tree. We see that this constructive interfer-
ence follows a majorization arrow, thus verifying step-by-
step the inequalities given in equation (2). Actually, the
observed majorization cycle reminds us the one already
found in the quantum algorithm of Section 3, but in this
case we have numerically checked that the present cycle
does not seem to follow the rules of natural majorization.
Complementarily, we have also observed that the prob-
ability amplitudes follow the interesting rule that those
belonging to even columns are real and those belonging to
odd columns are imaginary.

The deterministic search by quantum random walk
heavily exploits the column structure of the problem. The
register works on a superposition of columns, that is of
states belonging to the same column with equal weight.
It is then natural to ask whether a step-by-step majoriza-
tion cycle operates also at the level of columns. The idea
behind this analysis corresponds to accept that the final
measurement will filter each columns as a whole. The re-
sult of the measurement would correspond to determining
a particular column. The subtle point here is to find to
what extend the success of finding the OUT state is re-
lated to the column structure of the algorithm. We have
numerically considered the column amplitudes for n = 4
and n = 10 with a total of 9 and 21 cumulants to be cal-
culated respectively from the sorted probabilities at each
time step of being at each column of the graph. In Fig-
ures 13 and 14 we plot the result, which shows that there
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Fig. 13. Quantum walk algorithm. Time evolution of the nine
cumulants when the column measurement is considered, for
n = 4.
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Fig. 14. Quantum walk algorithm. Time evolution of the
21 cumulants when the column measurement is considered, for
n = 10.

does not exist a majorization cycle when the final mea-
surement is made on columns.

The conclusion is that deterministic quantum walks
cleverly exploit the column subspace structure of the prob-
lem to achieve step-by-step majorization on the individual
states.

7 Conclusion: A majorization principle

We can now collect all the results found in the analysis of
majorization in the quantum algorithms we have studied
so far and synthesize an emerging principle underlying all
of them. There are a total of nine empirical observations
about step-by-step majorization:

• presence of step-by-step majorization in Grover’s
quantum searching algorithm [16];

• presence of a natural step-by-step majorization cycle
in quantum phase estimation algorithms [17];

• presence of natural step-by-step majorization cycle in
the quantum algorithm for finding hidden affine func-
tions (Sect. 3.3);

• absence of step-by-step majorization in an optimal, yet
non-efficient, quantum algorithm for solving the parity
problem (Sect. 4.3);

• absence of step-by-step majorization in naive global
quantum adiabatic searching algorithms (Sect. 5.1);

• presence of step-by-step majorization in appropri-
ate local quantum adiabatic searching algorithms
(Sect. 5.2);

• emergence of step-by-step majorization for a slow
enough evolution rate in quantum adiabatic searching
algorithms (Sect. 5.3);

• absence as step-by-step majorization in an adiabatic
quantum algorithm solving the 2-SAT “ring of agrees”
problem (Sect. 5.4);

• presence of step-by-step majorization cycle in a deter-
ministic quantum walk on a graph solving a classically
hard problem (Sect. 6.3).

Note that our results concerning the analysis of adiabatic
quantum algorithms can have an alternative valid inter-
pretation: according to Figures 2 and 7, we see that the
part of the processes which does not obey step-by-step
majorization only occurs when the probability of success
has almost achieved its highest value. We are then led to
the consideration that absence of majorization only ap-
pears once the algorithms have already constructed the
right solution, having already done their job. A redefini-
tion of the algorithm by stopping the process once the
probability of the winner is maximum would lead us to
affirm that step-by-step majorization is naturally present
in quantum algorithms by adiabatic evolution according
to the evidence presented here. This new interpretation
does not alter our final result.

Adiabatic algorithmic processes do lead as well to a
reverse majorization of the probability distribution in or-
der to efficiently prepare the initial quantum state of the
computation. This can be efficiently performed by a set
of Hadamard gates (which produce step-by-step natural
reverse majorization). Nevertheless, this remark does not
only hold for the adiabatic paradigm. The usual formula-
tion of Grover’s algorithm in terms of quantum gates needs
as well of a preparation of the initial quantum state which
can be carried out exactly in the same way. Similarly,
all algorithms accommodate to a reverse majorization-
majorization cycle. We could argue that the initial step-
by-step reverse majorization procedure at the beginning of
the quantum algorithms is somehow trivial, as it only in-
volves the application of (for instance) a set of Hadamard
gates (with the exception of the quantum walk algorithm,
in which the initial step-by-step reverse majorization is
by no means trivial in the sense we state here as it is
carried by the structure of the graph). The fact that the
quantum evolution accommodates to a step-by-step re-
verse majorization-majorization cycle is reminiscent of the
reversibility of these quantum algorithms.

All the results found so far suggest that a step-by-
step reverse majorization-majorization cycle seems to be a
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necessary condition for efficiency in quantum computa-
tional processes, although not sufficient. This can be pro-
moted to a principle.

Majorization principle. Optimal quantum algo-
rithms must follow a majorization cycle.

This principle fits well with all the observed results
given so far. Note that those processes which are not opti-
mal do not necessarily follow the majorization cycle pat-
tern: the case of the optimal algorithm solving the parity
problem does not, while the extremely slow and inefficient
but majorizing adiabatic processes do. Step-by-step ma-
jorization may be viewed as a strong irreversibility condi-
tion for success probability necessary for optimal quantum
algorithms.

All our results are also consistent with a stronger state-
ment, namely that both step-by-step majorization and
large entanglement complement each other and are needed
for exponential speed-up. Entanglement brings the gen-
uine quantum mechanical tool which has to be used in an
optimal way, that is verifying step-by-step majorization.
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